
Wifi Security
-or-

Descending Into Depression
and Drink

Mike Kershaw / Dragorn
dragorn@kismetwireless.net

Pessimism is the New Optimism

• 802.11 networks
• Well-defended APs
• Basic vulnerabilities
• Network spoofing
• Client hijacking
• Layer 2 to Layer 7
• Advanced client misery
• Q&A

L
es

s
M

or
e

D
ep

re
ss

io
n

The boring bits

A brief into to 802.11 so the interesting stuff
makes more sense

802.11

• 2.4 and 5.8 GHz
• Multiple data encodings

depending on spec (11b/a/g/n)
• All fundamentally spread-

spectrum
• This means we can interact with

it easily

Packing your bags

• Unlike frequency-hopping
protocols, trivial to capture
802.11

• Generic Wifi card (Alfa 11g is
cheap to start with)

• Support in the OS (more on this
later)

• Total cost of ownage: $50 or so

802.11 networks

• Made up of three packet types:
• Management – Defines & controls

network (SSID, crypto, etc). These
are often interesting.

• Control – Flow control (CTS/RTS),
power save. Not super interesting.

• Data – Actual data frames, where the
rest of the good stuff lives

802.11 Management Frames

• Define network SSID, crypto
(beacons)

• Control client access (probe
request, response)

• Not authenticated
• Not encrypted
• New 802.11(foo) standards seek to

address this in the future

802.11 Data Frames

• Contain, well... data
• Layer2 encryption (WEP,

TKIP, AES) – Optional, not
on public hotspots

• Data layer encryption (SSH,
SSL, VPN) – Optional, user
discretion

Monitoring Voodoo

• Wifi devices presented as 802.3
Ethernet

• Promisc doesn't work the same
since it's not really 802.3

• Only gets data frames, not
management, and only some
data frames

RFMON

• Monitor mode / RFMON
• Special mode, switches

interface to 802.11 DLT
(sometimes with custom
headers for signaling)

• Requires support from
drivers/firmware

RFMON

• Shows all packets seen by radio
• This includes management, data, etc,

from all networks
• Almost all cards support this (notable

exception, special mobile chipsets
may not include support in firmware)

• Almost all Linux drivers, most *BSD,
some OSX drivers, and only one
(open) windows driver (AirPCAP)

What we get in RFMON

• All packets, regardless of
network, encryption, cloaking

• Client detection
• Layer2 IDS
• Passive observation
• Data collection for offline

encryption attacks

Packet Format

• 802.11 headers (unencrypted)
• Length of 802.11 varies slightly

based on type of packet
• Management frames are all 802.11

header
• Data frames have 802.11 headers +

(optionally encrypted) data

802.11 Addressing

• 802.3 have source and dest MACs
• 802.11 have 3 (or sometimes 4)

MAC fields
• Source; Client or AP
• Destination; Client or AP
• BSSID; Mac address of AP used

802.11 Roaming

• Multiple AP with same SSID
• Client assumes the SSID is a

common network
• Roams to the strongest signal
• Data handoff responsibility of

backend (controller or common
L2 network)

• Only differentiator is MAC addr

Hello, my name is 802.11

• Finding an 802.11 network is
really easy

• Networks are really noisy
• Beacon 10x a second
• Even weird networks make

noise when someone talks
• No way to really hide

Is anyone listening?

• Clients constantly look for
networks to join

• And often tell us every network
they'd like to see

• Just as easy to find as networks
• Clients can be really noisy

when they can't find a network

Sniffing around

• Put the card in monitor mode
• Requires an OS w/ rfmon drivers

(Linux, BSD, sometimes OSX,
AirPCAP on windows)

• Backtrack/Pentoo livecd
• Fire up wireshark/tcpdump/etc
• Kismet does all of this for us

The state of defense

Where we stand now with AP defense

I come not to bury 802.11...

• We've got a pretty good idea
about 802.11 security by now

• By “we” I mean “security
people”, not users

• But even “the great unwashed”
are clueing in, kind of.
Encryption on home nets is up

Secure configurations

• WiFi is secure in proper
deployments

• WPA-Enterprise
• Per-user authentication
• Per-user keying
• Mutual auth via certificates

Strong encryption

• We've got a pretty solid crypto
system

• AES used in WPA-CCMP as
yet unbroken

• TKIP showing flaws, but is
already past sell-by date,
move to CCMP

“Done Properly”

• WPA-Enterprise secure when
“done correctly”

• Opportunities for failure exist if
users don't validate certs (or
are allowed to say 'ok' at all)

• TKIP will eventually fall

802.11 AP Defense

• We've been doing this for a long
time now

• Best defense: Strong network
architecture (again, WPA)

• Monitoring for conflicting or
spoofed access points

• Client protection attempts to
defend known good users

Client Protection

• Inter-client traffic can be
blocked at the AP

• Defending clients on a strong
network is easy since the AP
controls crypto

• Defending clients on open AP
is very hard

Denial of Service Attacks

• Management frames unprotected
• Spoof AP, tell all clients to

disconnect
• Pure channel denial (flood channel

with noise)
• “Crowbar” defense – find the

person doing it and hit them with
a crowbar.

Making 802.11 cry

The current state of attacks against 802.11

Punching 802.11 in the gut

• Absurdly easy
• Management frames are

totally unprotected
• Open networks are un-

authenticateable
• It's shared media

Strangers with candy

• Avoiding hostile networks requires
smart users

• Users are – typically – bad
decision makers

• The OS doesn't help: It likes to join
networks it thinks it's seen before

• It's hard to tell what's real,
assuming the user even looks

Going viral

• Users like free wi-fi
• Who wouldn't want to join “Free

Public Wi-Fi”?
• Once, long ago, this network probably

existed
• When windows can't find a network, it

likes to make an ad-hoc version...
• Then someone else tries to join

Sore throats

• Of course, this junk ad-hoc network
doesn't go anywhere

• Unless, say, someone brought up a
network with the same name...

• … And handed out IP addresses...
• Which would get us LAN access to the

system
• But that would never happen, right?

Being too trusting

• Clients are really trusting
• If you say you're network Foo, you

must be, right?
• It's very hard to avoid really bad

behavior as a user
• Remember before? Roaming sure

looks a lot like spoofing

802.11 Roaming

• Multiple AP with same SSID
• Client assumes the SSID is a

common network
• Roams to the strongest signal
• Data handoff responsibility of

backend (controller or common
L2 network)

• Only differentiator is MAC addr

The packets must flow

• So if an attacker has a stronger
radio than the AP...

• You may not be talking to who
you think you're talking to

• So long as the packets go
through, the user never knows

• Man in the middle = Win

Stuck in the middle with...

• Dual-interface attacker
• Interface 1 connects to legitimate

network (any network, or cell
data, or...)

• Interface 2 provides spoofed “Free
Public Wifi” network.. or rhymes
with “FarDucks”.. or...

Bad karma

• It sounds pretty boring to have to make
a fake network for each client

• Plus not everyone is looking for “Free
Public Wifi”. Just almost everyone.

• Enter Karma and Airbase
• Answer all probe requests
• Are you “Free Public Wifi”? Sure am.
• Are you “My Corp Network”? Yup!

Karma ran over your dogma

• When you are the network, you are
the internet

• Yes, your IMAP server is here!
Give me your password!

• You wanted to update some
software? Happy to!

• Evilgrade
• Please, log in to “twitter”!

Make a bad thing better...

• Karmetasploit!
• Metasploit + Airbase =

Massive, evil attack
framework + client hijacker

• You wanted facebook? How
about a face full of browser
exploits instead?

More Man-in-the-middle

• Many sites encrypt login, but not
session

• Session cookies, data, etc vuln
• “The Middler”, SSLSniff, Cookie

Monster
• Hijack sessions via MITM

This bores me

• All of these attacks are really
pretty boring

• Why? They're really obvious.
• Might still get some users, but

it'll be pretty blatant
• I think points ARE awarded for

style. Or at least, for stealth.

So wait...

• Didn't we say 802.11 is shared
media!?

• We just found the best time
machine ever!

And not some hippy do-gooder
time machine, either

But one where we get to bring back
weapons from the future

The bad old days

• Hair metal, grunge, ripped jeans
• Unswitched shared media

Ethernet...
• Sniffing the entire ethernet

segment
…

• TCP session hijacking...

That's too easy

• It'd never be that easy, right?
• Right?
• People have to have gotten

smarter by now...
• You'd never take a system from

a secure network to an
insecure network, right?

Mmm, latte

• … and airports
• The gym
• A hotel
• Bookstores
• McDonalds
• Conferences

Making a mess

• Management frames have no
protection

• Open networks have no client
protection

• Nothing stops us from spoofing
the AP and talking directly to
a client!

No protection

• AP may try to filter inter-client
communication by blocking packets
when they hit the AP

• But by generating an 802.11 packet
FROM the AP and TO the client

• The client thinks the packet is legit
• The AP has no opportunity to act on it
• We can communicate directly with

“protected” clients on open networks

Shooting up

• Most modern cards use “soft”
MAC control layers

• Most of the control offloaded to
the OS

• Only certain timing critical stuff
handled in the firmware

• This means we can send anything
we like (usually)

The shakes

• Unfortunately there aren't really
any standards for injection

• Every OS does it differently
• Different drivers do it

differently
• Sometimes needs custom

headers per packet

Making it easy: LORCON

• Writing the same injection code
for every app sucks

• Writing custom code for each
driver sucks

• Writing apps for each OS sucks
• Hopefully LORCON doesn't

suck

LORCON2

• Unfortunately... the LORCON1
API... kind of sucked

• New API modeled off of PCAP
• Designed to be really easy to use
• C, Ruby API
• Will soon support all the cards

LORCON1 did, for now, Linux
• http://802.11ninja.net

Super simple

• Automatically determines the
driver

• Automatically configures
virtual network interfaces and
sets up modes for injection

• Send arbitrary bytes -or- use
packet assembly API

The most basic
lorcon_driver_t *dri;

lorcon_t *ctx;

uint8_t packet[...];

dri = lorcon_auto_driver(“wlan0”);

ctx = lorcon_create(“wlan0”, dri);

lorcon_open_injmon(ctx);

lorcon_set_channel(ctx, 6);

lorcon_send_bytes(ctx, sizeof(packet), packet);

The inspiration

• Wifi session hijacking
• About 5 years ago, Toast debuted

Airpwn at defcon
• TCP stream hijacking on 802.11
• Why hasn't everyone been using

this!?
• Not just for shock-porn anymore!

Rerouting streams

• Typical layer2 attack
• TCP is only “secure” because

the seq/ack is unknown
• Attacker sees your L2, so seqno

is known
• Any TCP stream subject to

abuse

Anatomy of a session

• Handshake
• Client → Server

“GET /foo.html HTTP/1.0”
Seq 123 ack 10

• Server ← Client
“HTTP headers, content”
Seq 10 ack 189

So lets add this to MSF

• Lorcon Ruby wrapper
• Racket packet assembly (high

speed Ruby packet assembly)
• Ruby PCAP
• And a little TLC

Anatomy of an Evil session

• Handshake

• Client → Server
“GET /foo.html HTTP/1.0” [seq/ack]

• MSF ← Client
“Malicious data...” [seq/ack]

• MSF ← Client FIN!

• MSF → Server FIN! [using client seq/ack]

• Server ← Client
“Real data!” [old seq/ack]

MSF
msf > use auxiliary/spoof/wifi/airpwn

msf auxiliary(airpwn) > set INTERFACE
alfa0

INTERFACE => alfa0

msf auxiliary(airpwn) > set RESPONSE
"Airpwn - MSF!"

RESPONSE => Airpwn – MSF!

msf auxiliary(airpwn) > run

MSF
msf auxiliary(airpwn) > run

[*] AIRPWN: Response packet has no
HTTP headers, creating some.

[*] Auxiliary module execution
completed

msf auxiliary(airpwn) >

[*] AIRPWN: 10.10.100.42 ->
208.127.144.14 HTTP GET
[/files/racket/src/doc/] TCP SEQ
542050816

Fine-tuning

• Match & replace in regex
• Response can be full JS, image

replacement, HTML, a file
• Sitelist YAML file for matching

specific requests (poison lists
of known files, like jquery)

Autogen

• Airpwn-MSF automatically
generates HTTP headers as
needed

• Complete attacker control of
page content including
headers, too

Ill-gotten profit

• What does that really get us?

• HTTP content replacement

Or in other words...

• Control over the page DOM
• Control over forms
• Control over the browser in

general
• Access to anything in the

security context of the
compromised page

Obviously scripted

• So we can replace content...
• What do we do now?
• Nearly all complex sites include

a pile of javascript helper files
• What happens if we replace one

of those?

It's not news, it's Javascript

JS Fragments

• Especially attractive
• Totally invisible to the user
• Multiple requests = Multiple

opportunities to land attack
• Run in same privilege domain

as web page

I'm in your browser

• Rewriting your DOM
• DOM = Document Object

Model
• Programmatic manipulation of

page content
• Once in the DOM we can do

ANYTHING

It's not stupid, it's advanced

var embeds =
document.getElementsByTagName('div');

for(var i=0; i < embeds.length; i++){ if
(embeds[i].getAttribute("class") ==
"cnnT1Img") { embeds[i].innerHTML = "...";
} else if (embeds[i].getAttribute("class")
== "cnnT1Txt") { embeds[i].innerHTML =
"..."; }}

DOM is tasty

• What else can we do?
• Rewrite all FORMs to proxy

through us? ... Sure.
• Rewrite all HTTPS to HTTP so we

can capture logins and “secure”
data? ... Yup!

• Poison content topical to a
conference? Tin foil hat, but yes!

HTTP not so S
var refs =
document.getElementsByTagName('a');

for (var i = 0; i < refs.length; i++){

var rval =
refs[i].getAttribute("href");

if (rval == null) { continue; }

refs[i].setAttribute("href",
rval.replace(/^https:/, "http:");

}

This really matters

• This matters

• A lot.

• No, seriously.

Persistence pays off

• Who has read rsnake's VPN paper?
• Attack HTTP clients via cache

control
• Layer 2 attacks against web

content can be made persistent
• That means once you leave...

you're still owned

Fast cache

• Short version of the VPN paper:
• Browsers have cache
• Cache, by nature, remains

around
• Users don't notice
• If I own your TCP session, I

own your cache control

Fast cache

• Client is fed a spiked JS file with
cache set to 10 years

• That file remains in their cache
• And is re-used when they revisit

that site
• From inside the secure office

network (or wherever)

Don't think it's a problem?

Lots of victims

• Remember:

–None of the javascript files are
visible to the end user

–Lots of opportunities to poison the
files

Making it happen

• Cache-control: max-age=99999999,
public
-or-
Expires: Fri, 13 May 2011 13:13:13 GMT

• So we hijack a common JS file
• Spike it with malicious code
• Set it to cache
• Now when the user goes back to

work and goes to twitter again...

Watch the spikes

• User now has a spiked, cached
javascript

• Browser will keep this and re-use it
every time until it expires

• Iframes? Kaminsky socket/sucket?
Load new browser exploits?

• But a user would never go to Twitter at
work, right?

Poisoning the well

• How many sites use Urchin.js...
• Hosted off the same URL at

google?
• What happens when we poison

the url?
• We get execution on every site

using it

Call home to Mom

• Cache modified JS that calls home
every time the page is visited

• Maybe no good attacks in the browser
this week?

• Wait for a browser 0day then flip the
switch to include malware

• Every system that has the cached call-
home is attacked as soon as the users
visit the poisoned site

Shimming the door

• Cache every page with JS shim
• Shim fetches original content
• DOM manipulation
• Regex replacement
• Future exposure to new browser

vulnerabilities
• But there haven't been any big

browser vulns lately, right?

There are no innocents

• No website is “innocent”
• Websites that don't ask for

logins are just as capable of
feeding browser exploits

• Any website can be poisoned
with browser-owning code

Never underestimate fools

• But won't SSL solve it?
• Not really, users still have to be

smart enough to not accept a bad
cert

• And users would never do
something insecure, right?

• OBVIOUSLY that pop star wants
me to see her naked!

Self-made man

• Self-signed certificates are “obvious”

• But we're the technical people

• “Signed by VeriSign” vs “Signed by
Verisign” or “Verisign” vs “Verisign”?

• Assuming a user even looks and doesn't just
click “OK”

• Users just want the web

• “Click OK until porn”

Fail Whale

• Uneducated users will always
find a way to expose
themselves

• But we're all smart, we're fine,
right?

• Even the experts can get
fooled...

Moxie Marlinspike

• Moxie Marlinspike released SSL
null-byte attack at BH09

• SSL certs validated for HTTP by
matching CN (common name)

• Wildcards are allowed - *.foo.com
is valid for any host in foo.com

• C strings are terminated with a null
byte...

Bob can vouch for me

• You trust that the CA validated
foo.com before giving out the cert

• CA only gives out certs for owners of a
domain

• What if we got them to sign a cert for
*<null>foo.com?

• And then C code saw that null and
stopped?

Maybe fixed...

• Sure, the Moxie bug is fixed
• What about the next one?
• Even smart people fall to 0day
• Once your cache is poisoned,

it's going to stay there...
• How often do YOU use public

wifi?

Well aren't you clever...

• I'm smart!
• I use a VPN!

-or-
• I force my users to use a VPN

via user management!
• This won't work against me!

Yuh huh but...

• You're right, it wouldn't...
…

• Except your browser has no
concept of security domains

• What was cached in an insecure
domain will remain for a
secure domain

“Click OK to agree...”

• Many hotspots have a landing
page to agree to EULA or sign
in

• Many first-stage landers are not
encrypted

• Unencrypted page on open
network? Perfect target

Magic (h)8 ball

• If attacker controls your pre-
vpn landing page...

• Then the attacker can control
your browser...

• Iframes? Pop-under windows?
Ajax queries dumped to
nowhere?

Top 10 countdown

• All the attacker needs to do is
inject code to go to the top N
pages the victim may be likely to
visit

• Request page in the background
• Cache spiked page (which the

victim never saw)

Smart JS

• Attacker landing page can request
content multiple times

• Compare content with signature for
attack

• Request again if attack didn't land
• Now we own arbitry sites in cache

PRE-VPN if we guessed right

Frequent Landings

• Take it one step further: VPN
allows access to internal
pages, right?

• So if the attacker controls L2...

Dumb Network Stuff

• If we own L2, can we attack other
protocols?

• Sure can!
• Race the DNS server!
• Wait for a DNS query, then...
• Set a QR flag on the request and

supply our own response

DNS-pwn in MSF

• Same model as Airpwn
• YAML config to match

multiple queries with different
responses

• Races DNS server to give user a
“custom” IP

Your intranet is showing

• So if we control the browser
• We control DNS resolution
• We can re-try as quickly as we

want thanks to a JS script that
watches for success...

• What stops us from caching
http://intranet/

http://intranet/

(hint: Nothing)

• Nothing!
• How about a shim that ships

your internal pages off to a
remote server once you're on
VPN?

• Or just rewrites all your form
DOMs to proxy out?

Browsers cache other stuff too!

• Browsers are great!
• Speed of user experience is the

biggest concern...
• So lets cache DNS in the

browser, too!
• So this means...?

Trust me, it's over here

• Pre-VPN browser DNS
poisoning

• Post-VPN site control thanks to
guessed internal DNS names
being cached as external
servers

What else can we do?

• What else has cache?
• Fun fact – Flash maintains it's

own cache
• Even when a user clears

browser cache, Flash cache
can remain

• TrustMe-ItsCool.swf

“Mobile Convergence”

“Smart” phones are dumb?

• So-called “smart” phones are
really general-purpose
computers now

• Complex browsers
• Lower bandwidth networks
• Yup, very happy to cache data

Not talking to you

• Of course, all the smartphones
are on cell networks, right?

• I'll just use 3G!
• You can't see me there!
• True...

Used to fail

• Smartphone users are used to
going to wifi

• Some prefer it – power use /
speed / data limits

• Besides, we could “help” them
along...

No, you shouldn't

• You absolutely should NOT go to
import sites

• Should NOT buy illegal cell phone
jammers to force victims to use
wifi

• And of course someone trying to
own your company wouldn't do
something illegal, right?

So how many?

• So how many of your users (or
executives!?) carry
smartphones between the
office and airports?

• How do you clear the browser
cache on an iPhone?

Break me to Jail

• Jailbreakme website would
'jailbreak' iphones

• Jailbreak = root compromise
• A root compromise via the web

browser
• The best you could hope for is

a proper jailbreak...

Jailbreak II

• The worst is complete root-
level ownage of device

• No UI for inspecting contents
of flash, even if a user were
inclined

• No way to view unix processes
running in the background

Jailbreak III

• Since it's in the web browser, anyone
using an iPhone on unencrypted
WiFi was vulnerable until Apple
fixed it

• Session hijack works great here
• Other fun side-band attacks!

The best band is the side band

• Attack iPhone vulnerabilities through
the cell network

• It costs about $1200 to build a SMS
and Voice (but not data) capable cell
tower that fits in a backpack

• Why yes, I'm ATT
• You have a new SMS!

Panic the masses

• All phones get a SMS on capture to our
hostile tower

• “911 has been alerted of an emergency
in your area, follow this link to
confirm recipt or police will be
dispatched immediately”

• “Tower” doesn't do data...
• But access points also fit in backpacks.

 How convenient.

But that would be illegal!

• Sure, it's illegal.
• But when has that stopped criminals?
• The “best” you can hope for is a phone

full of trojans that call 1-900-xyz all
night to ring up the bill

• The “worst”? Someone targetting
areas your employees are known to
visit?

Don't just pick apples

• Other platforms have bugs, too

• Android has had several browser bugs

• Different architectures present different
levels of risk (android uses different users
per app, for example)

• It's often just 'nix underneath, with all the
good and bad that implies

• Apple has enough saturation to be a
REALLY GOOD target though

Dynamic Host Ownage Protocol

• What else can we do to L2?
• DHCP is a good target
• Smart AP can filter DHCP for

authorized servers only
• But if we're talking directly to

the client...
• Same trick as DNS

DHCP is fun

• Push the same info but a
“custom” DNS server?

• MITM routing?
• NIS login domain?
• Netbios options?
• All perfectly plausible...

Chasing tail

• We can use a similar injection
trick to append to streams

• What does a HTTP/1.0 stream
look like?

TCP PSH/ACK
HTTP/1.0 200 OK
Headers: Foo
data
FIN

HTTP tail

• So what happens if we beat the
FIN?

• We now control the socket
• We can continue writing data
• Script after </html> works fine!
• Defeat server filters by

appending conflicting content

Gifarrr

• GIF-AR attack appends JAR to
GIF

• ZIP can be appended after other
content

• Exact behavior depends on
browser

• Lets us sneak content in

Tail fail

• Beating the FIN is really hard
to do

• Only works about 8% of the
time

• Makes HTTP 1.1 mad
• Can't control caching
• Still, if it works sometimes

“But I'm encrypted!”

• Lorcon doesn't support injecting
on WEP/WPA … yet

• WEP is trivial – one key used
for everyone

• WPA is slightly less trivial, but
WPA-PSK with a known PSK
isn't good...

Sharing is fun

• WPA-PSK uses one shared secret
• PSK used to compute a per-user

key on join
• Sounds good... except if we know

the PSK, and we watched a user
join...

• The only reason WPA-PSK is “ok”
for conferences is a lack of tools

Where we go from here

• Future plans:
• Better MSF integration with

other L2 attacks
• Dynamic content generation

based on target
• Integration with browser

autopwn

802.11 fuzzing

• Lots of opportunities for fuzzing
• Already semi-continual flow of

driver bugs
• Lots of variable-length and nested

variable fields
• LORCON Packet Forge simplifies

packet building

Joe vs the Volcano

• Very hard to detect these attacks
• Attacker is not spoofing an AP

(Most IDS detect on beacons)
• IDS system must know every

packet being sent legitimately to
spot these

• IDS must see the packet in the air

Loosing battle

• If the IDS can even see it
• Low power highly directional

antenna lets attacker snipe a
single user

• Wireless IDS has no chance
• Wired IDS never sees the

malicious packets

In summary...

• We've more or less figured out
how to defend access points

• It's much harder to defend
clients

• Especially when they go off
into the world onto insecure
APs

In summary...

• Using an open network?
• Sites you think you trust, you

can't
• Spiked attacks can stay resident

in the browser
• Your users might be bringing

something back with them

In summary...

• This is bad even for smart users
• Normal users don't stand a

chance
• You may already be screwed

• I warned you this would be
depressing...

Pessimism is the New Optimism

Trying to fix it

• Use a VPN – at least it's a start
despite the problems

• Easy for US
• Hard for most users
• Hard to enforce: Users don't

like barriers between them and
internet

Other options

• SSH SOCKS tunneling (basically
just a VPN)

• Mandate updates (easier said than
enforced)

• Forbid users from taking laptops
onto open networks (policy,
UAC, don't give out laptops?)

Tragedy of trust

• Would be nice to say “move
open networks to WPA”

• WPA-PSK? Better but not a
solution.

• WPA-EAP? Better still, even
with the same user/password
you get per-user keying

Tragedy of trust

• But WPA-EAP requires SSL
• If cert is signed by a common CA,

easy to get another from the same
CA

• If cert is signed by self-sign CA
user has to accept

• Up to user to determine valididy
• Not what users are good at

Stuck in the rut

• Hard to deploy secure public
networks

• Some vendors try to solve it
with custom clients

• Ties into specific OS then
• Running foreign binaries
• No really good solution yet

Protecting yourself

• Manually enforce security domains
• Use different browsers for login

and normal use
• Manually clear cache
• Never keep windows open between

security domains
• Still scary, forget once and you're

screwed

Thanks to..

• Rsnake
• HDM
• Toast
• Renderman
• Jesse Burns
• And anyone I've forgotten

Final bad news

• Kismet can sniff Zigbee now!
• Coming soon: Bluetooth

sniffing with commodity
hardware! ($50 boards, via
Mike Ossmans Ubertooth
work)

Q & A

• Lorcon @ 802.11ninja.net
• Kismet @ www.kismetwireless.net
• MSF @ metasploit.com
• Me @ dragorn@kismetwireless.net

